|
|
Underground Structures
Design and construction of under-ground structures require thought processes and procedures that are in many ways different from other design and construction projects, because the principal construction material is the rock mass itself rather than an engineered material. Uncer-tainties persist in the properties of the rock materials and in the way the rock mass and the groundwater will behave. These uncertainties must be overcome by sound, flexible design and redundancies and safeguards during construction. More than for any other type of structure, the design of tunnels must involve selection or anticipation of methods of construction. ![]() A Tunnel Under Construction
The underground
structures or openings can broadly be classified into three categories;
(i) Tunnels, (ii) Cavern and underground openings and (iii) Cavities
and mines.Tunnels Tunnel is a horizontal or near horizontal excavation that is open to the ground surface at each end. Tunnel are constructed in soil or rock for transportation system water supply, sewerage and hydropower purpose. Tunnels, other than mine tunnels are essentially an element of transportation. Tunnels are used to conduct the line under a natural obstacle, such as a hill or ridge. In cities, tunnels carry underground railroads and highways which because of traffic complexity, cannot be built over the ground. Tunnels are also used for water supply and sewage disposal. For hydropower generation projects tunnels are used as water conducting system. Engineering Geological Studies For Tunnels The extent of engineering geological studies depends on the stage of the project and on the importance of the work. The important investigations which have to be carried out for the tunnels are;
The tunnel should not be located in rocks disturbed by weathering or disrupted by faulting. If the fault zone cannot be avoided, it is desirable to align the tunnel perpendicular to the fault plane. The major joints and fracture systems are also the controlling factors, particularly in underground openings of large diameters. Location of tunnel entrances : Care must be taken not to disturb the stability of slopes by approach cuttings. Sliding movements and pressure could delay the working progress. In order to estimate the cost of the tunnel construction and to elaborate the detailed project, pressure on tunnel lining must be determined and tunneling methods should be considered. Assessment of drillability and excavability of rocks is necessary for providing the construction site with adequate equipment. Co-operation in securing necessary aggregate material for tunnel lining, since its supply must be continuous as the work progresses. Study of the effect of tunnel working on the surrounding area. The drawdown of the ground water table may result in the disappearance of water in wells and springs. Subsidence of the ground surface may damage buildings, transportation routes and others. Investigation of The Geology of
The Area and General Alignment of the Tunnel
In case where a geological map of at least 1:25000 scale is not available, reconnaissance investigation must involve detailed mapping of a wider area along the tunnel line. Mapping of a narrow belt would not give a complete picture of geological conditions. For deep mountain tunnels the whole drainage area of the designed tunnel should be mapped. During reconnaissance investigation, dips and strikes of beds cropping out in all valleys and gourges transecting the mountain rage are measured, particularly in those running parallel to the tunnel route. Deep valleys and gorges in the proximity of the tunnel are the best source of information for structure and general geological setup likely to be encountered in the tunnel alignment. Where there is lack of natural outcrop or the locations where thick soil cover is present subsurface explorations are necessary. If the boundaries of individual strata is covered by superficial deposits, the use of test pits is advisable. On the basis of geological map, supplemented by the results of field and subsurface exploration, longitudinal profiles are constructed. However, prediction of geological conditions for deep, long tunnels is a difficult task. Because of the lack of well exposed boundaries between geological formations and minor inaccuracies of the topographical maps, geological methods do not always furnish actual conditions likely to be present in the tunnel alignment. Engineering Geological Explorations For Tunnels Geological, geomechanical and hydrogeological factors determine the degree of difficulty and cost of construction for any underground structure. For the design and construction of any underground structure following data/ information is required;
Exploration For Reconnaissance
and Feasibility Studies
The underground project is conceived, defined and broadly scoped out during the reconnaissance phase. Engineering geological information required during this phase is obtained mostly from secondary data. At reconnaissance stage emphasis is on defining regional geology and the basic issues of design and construction. At this stage data acquisition includes;
Initial field studies should start with a careful reconnaissance over the tunnel alignment, paying particular attention to the potential portal location. Features identified on maps and air photos should be verified. Rock outcrops, exposed in road cuts or along the banks of the stream provides a information on lithology faults, joints and contacts of various lithologies. The field survey must account for features which may pose difficulty during excavation for underground structure, such features may be;
|
Hydrogeology Ground
water has the potential to cause great difficulties for underground
work, efforts should be made to define the groundwater regime. Data/
information on aquifers, sources of water, water quality and depth to
groundwater should be collected. Mapping of perennial streams and other
water bodies should be carried out. Proximity of the ground water table
may judged by the type of vegetation growth on the site. As a part of the
hydrogeological survey, all existing water wells in the area should be
located and the ground water levels should be taken. Additional hydrogeological
work to be carried out at a later stage including measurements of groundwater
levels or pressure in boreholes, permeability testing using packers
etc.
Geophysical Explorations Geophysical
methods of exploration are useful at the early stage of a project. Because
the geophysical explorations are relatively inexpensive and can cover
relatively large volumes of geologic material in a short time. Most
common geophysical explorations carried out for underground works are
seismic refraction or reflection and electrical resistivity surveys. Seismic
explorations can measure the seismic velocity of underground materials
and discover areas of velocity contrasts, such as between different kinds
of rocks or at fault zones. They are also useful in determining the elevation
of the ground water table. Seismic velocity can also describe the quality
of rock likely to be encountered along the tunnel alignment.
Additional Explorations During Feasibility Studies
It is appropriate to conduct initial field explorations in the form of borings or trenching at the early stage. This is primarily to verify the presence or location of critical geologic features that could affect the feasibility of the project or have a great effect on the selection of tunnel portals. Explorations For Preconstruction Planning During the engineering design phases, explorations must be carried out to acquire data not only for the design of the underground structure but also for its construction. For this reason, exploration programme for underground works must be planned by engineering geologist in close cooperation with designers and construction engineers. Most geotechnical data for design are obtained during preconstruction planning. Supplemental explorations must be carried out in the later design stage. Environmental And Geologic Data Requirements The specific environmental data needs for a particular underground project very much depend on the geologic and geographic environment. The factors which effects the underground exploration program are;
Because of complexities of geology and the variety of functional demands, no two tunnels are alike. It is therefore difficult to give hard and fast rules about the required intensity of explorations. However, some rules which may help in the planning of explorations are;
|
|
|
|